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SPACE SYSTEM SPECIFIC IMPULSE 

ABSTRACT 

The high specific impulse (l ) potentialities of nuclear pro- 
•  sp 

pulsive devices, which appear so attractive for space vehicle applications, 

are knov/n to be partly offset by the relatively massive equipment required. 

A single measure for rating any propulsive system based on its dynamic 

effectiveness and which includes this mass effect, is derived as a system 

specific impulse, I 
ss 

I  is determined as the equivalent I  of an idealised system 
ss sp ^ 

having the same net effectiveness as the actual system but with zero jdf- 

(mass of all structural equipment except payload, iM )• By expressing 

I  in terms of actual I  , r (the ratio ra /m , where m  is 
ss sp '  s v        s' o ;      o 

the initial gross mass), and the equivalent velocity v , a number of 

important results follow: 

1. For chemical systems with r = 0.05 , the ratio I /l 
s ss sp 

is 0.9 for a satellite mission. For nuclear systems with 

r  ranging up to 0.5 , I /l   reduces to as low as 
s ss sp 

0.3 . 



2.    For increasingly higher I    , with    r     and   v      constant.    I u ^      ^ sp' s r '      ss 
increases rapidly at first, then tends toward a limit    v /  [g log (l - r )J 

for I     -» rvl J which shows that improvements in I      are highly fruitful up 

to a point and that little is gained by further increase of I      unless    r 
'■ u •' sp s 

can be reduced. 

J.    By representing    v,    and    log G    as coordinates where    G = m /my 

the design point for any system has vector properties with I     proportional 
s s 

to the vector argument. The I  of a multistage vehicle is proportional 
S 5 

to the argument of the vector sum of the separate stages. 

h.    For proportionate multistaging, I  for the vehicle is identical 
ss 

with that for each stage,  showing the vehicle propulsive effectiveness is 

not Improved by staging. 

5. llie magnitude of   G^     (per stage)  is determined mainly by the 

logarithmic form of the basic equation rather than by I    ,   so the 

favorable payload-carrying capability of any stage,  whether chemically or 

nuclearly propelled,   is approximately the  same  (G ,   = J to 6.) 

6. Finally,  the principal improvement of the higher I      of nuclear 
sp 

systems lies in the considerably higher maximum    v      per stage by which 

more extensive missions  (v   up to 120,000 ft/scc)  can be accomplished 

with one or two stages rather than eight  or ten,  thus reducing the vehicle 
Pin P 

mass ratio    G    from    G -,       or    G ,        to    G -,    or    G ,     ,   where    G ,     is si si si si    ' si 
approximately constant for all types. 

) 

INTRODUCTION 

The specific impulse, I  , potentialities of nuclear propulsive 
sp 1 2 

devices, which range from 800 sec to 15,000 sec and over ' , make such 

devices highly attractive for space application.  It is well known, 

however, that they are massive and consequently not as effective as 

indicated by their attractive I  values. Yet in many analyses, as 
1        2 SP 

Sutton or Ehricke , systems are rated on 

reference to these large mass differences. 

1        2 SP 

Button or Ehricke , systems are rated on the basis of I  without ; '; sp 



I ,  being the total impulse per unit mass of ejected propellant, 
sp 

is an important measure of the capability of an engine-propellant com- 

bination to produce "static" thrust. In any application, however, the 

problem is dynamic, the essential goal being to accelerate a payload 

to a desired velocity, the thrust being only one of several factors 

determining this acceleration . A single measure for this dynamic 

condition is needed. 1^ has been used as a convenient approximation 

but is a usable approximation only as long as the mass of propulsive 

equipment and structure such as rocket engine, pumps, or tanks (needed 

to utilize the propellant) is sufficiently small and similar, as for 

example when comparing two systems using nearly equivalent liquid 

chemical propellants. V/hen evaluating types with widely differing 

relative masses, however, I  alone can be quite misleading. Examples ;      ' on u 

include: 

1. In comparing a liquid hydrogen with a kerosene system, the 

liquid hydrogen has about one-twelfth the density of kerosene and hence 

requires extra nass for the much larger tank volume as well as special 

equipment to handle the low temperatures and evaporation. In any 

application these added masses are necessary and raust also be accelerated 

before the jo1^ higher I  can be utilized. 
'       sp 

2. In evaluating the comparative merits of a nuclear propulsive 

system, as mentioned above, the equipment needed for the nuclear system 

is relatively so much more massive than that for the chemical system that 

the propellant I  alone loses all meaning as a measure of the system 

capability. 

PMT (l) SniGLE STAGE VEHICLES 

(1.1) A Measure for Comparison of Propulsive Systems 

This paper derives a single measure for comparing such widely 

differing schemes of propulsion by defining a vehicle or system specific 

impulse (represented by I ^ based on the ability of the system to 

accomplish a reference mission. I  has the advantage of being a 

single measure and is derived in a form to be used as an equivalent I 



It is observed first that I , the engine-propellant specific 

impulse, is a measure of the system input or applied impulse, and that 

I , the system specific impulse, is a corresponding measure of the s s 
input of an ideal system which has the maximum capability of accomplishing 

the reference mission. 

The reference mission is defined in terms of the fundamental 

equation of motion, from which the equivalent ideal propulsive system 

is derived. The system specific impulse is determined in terms of this. 

(1.2) Useful (Net) Impulse 

The end purpose of any reaction propulsive system is to impart 

a total equivalent useful output impulse to a useful mass or payloed., 

m J . This useful impulse is 

I  = m.v (1) 
u     ^ r x 

where v  is the equivalent or reference velocity defined later. 

(1.3) Applied (input) Impulse 

To obtain this I , u ' 

(1) impulse is applied to the system by an "engine" which provides 

thrust obtained by casting off,  stopping,  or deflecting a "propellant." 

The applied impulse is then 

I      =      fm v dt    =    m v (2) 
a j    p e p e 

where m  is the time rate of mass ejection; v is the "effective p ü e 
exhaust" velocity (of ejection). 

(2) the "engine", propellant, and structure necessary to operate 

the engine and "carry" the useful load all have mass. A portion of the 

applied momentum, I , must be used in accelerating this "non-useful" 

mass while imparting I to m ^ B 



h 
The specific impulse is defined as 

By Eq. (2) then 

I   = v /g (3) 
sp    e' 

I  = (ßl )ra W a      sp p 

We note that I      is a direct measure of the capability of the propulsive sp 
system to produce applied impulse,  I    ,  rather than useful impulse,    I    . 

a, u 
Our purpose here is to determine a measure for the propulsive system, 

including everything required to impart I  to m J . This will then 

be a measure of the capability of the propulsive system (including 

necessary structure, etc.) for accomplishing the mission. 

{l.k)    Equivalent or Reference Velocity 

The equation of motion of a reaction propelled vehicle utilizing 

propellant mass castoff at a rate of m may be written 

dv 
(m   -rät) (-r— + a.)    =   m v (5) ^op/sdt r pe w/ 

where 

v      =    the actual velocity at any time 
a. 

a  = the resultant acceleration induced by gravity, drag, etc. 

expressed as a function of time 

m  = total launch mass 
0 

= m ^ + m + m i   P   s 

m  = mass of all structure and equipment except m   and m 

We define the equivalent or reference velocity as 

.T       ,T m v dt m 
v  = v + f a.dt =  f  p e > . = v log 2_       (6) 

a  ;o 1     Jo   mo - mpt   e    ^^^ 

fT 3 The velocity loss term,  1 a dt , has been evaluated by Donovan, for 
0 

example, for typical applications. 
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(1.5)    Relation of I   to I  u a 

From Eqs.  (l) and (2) 

m, in 
-A-   1 nrr   

Eq. (7) brings out the distinction between I and I and shows the 
a    u. 

relationship between the factors ra > ma  and m  and I . 

From Eq. (l) we have 

v  = I /m» (8) 
r    u' /C 

which shows    v     to be the useful impulse per unit mass of useful load. 

Since both I    and the reference mission are determined by   v    . u J      T > 

we concentrate our analysis on it.    From Eqs.  (3),   {h),  (7) and (8), 

v     may be written in the following convenient forms: 

m 
V        =     V     log  ;  (9) 
r e      ^ m ,   + m w/ 

/ B 

- ve log (r^     + rs) (10) 

log    [6 + r^    (1 - 6)J (11) v 
e 

where 

r,    =   m,/m 
i i'   o 

and 

from 

5    =    ms/(ms + m ) =    rs/(l - r^   ) 

I    -    ri     +rp + rs {12) 

m     =m/     +m+m 0 x p        s 

as defined before, 



(1.6) Equivalent Ideal Propulsive System 

From the fundamental nature of a reaction propulsive system, 

there would be no thrust or I as shown by Eq. (2) unless a mass of 
0, 

propellant m  Is carried aboard and cast off at a rate m . The 
P P 

most Ideal condition possible then Is when only my , the useful 

load, and m , are present, and in , the mass of all the remaining 

equipment and structure, is zero. For this case, then, m ,  r  and 
s        s 

5    are all zero and Eq.   (ll) becomes 

''ri    =    -Veil0Srii ^ 

=    vel log G:L (Hi) 

v 

where 
G = l/r^ (15) 

Eqs. (l^) and (15) describe the fundamental relation between the basic 

performance parameters of the ideal system. 

(l.T) System Specific Impulse, I ss 

If we compare any actual system described by Eq. (ll) with an 

ideal system which has the same output or useful impulse, then 

'Vact. = K\ 

and by Eq. (l) we may also take 

(vJ  ,  = v. and   (r . ) r^ act. - vri     ^   ^ I  ^act. = r^i 

Thus, by Eqs. (ll) and (13) 

velog [5 + ry (1 - 5)1 
v , = -^ ^ «i * (16) 
ei        log rj v ' 



v   determines the magnitude of an equivalent propellant exhaust velocity 
ei 

which will impart the same useful impulse (l = m. v ) to the equivalent 

ideal system (with o = 0) as is imparted to the actual system by v , 

the actual effective propellant exhaust velocity. 

Since by Eq. (j) I - y /ß ,  then we may define the system 
op     G 

specific impulse as 

I   = v ,/G ss    ei 

Eq. (l^) then gives 

log [o + r^ (1 - 5)] 
I  = I   —^  (17) ss     sp      log r v  ' 

x 

A graph of I /l  as a function of G  is given in Fig. 1 for 

representative values of 5 . 

Using Eqs. (3), (ll), (12) and (15) v;e have also 

Iss =    - V [g log (1 - rp - rs)] (18) 

= - vr/(g log r^ ) (19) 

= vr/(g log G) (20) 

From Eqs. (l) and (12) we have 

v  = - v log (l - r ) (21) r      e  0 s    p v  ; 

If we define the mission constant as 

v      v 

= = ^ = ^ (22) 
e      sp 



then Eq.   (2l) gives 

1 - r      :=    e 
P 

(23) 

and Eq.  (l8) becomes 

Iss    =    " vr/[gloG (a"0- rs)J (2M 

By Eqs. (ll) and (22) 

c = - log I 6 + r. (1-5 (25) 

so that Eqs. (15) and (l?) give 

^s  =  isp^)A°^ (26) 

(1.8) Limiting Characteristics of I 

We examine two special cases of Eq. (24) 

(l)  I  ^ CO 
sp 

From Eqs. (22) and (23) 

and I   asymptotically approaches a maximum 
S o 

(I )    = - v ss max     r 
fg log (1 - r )] 

/[g log [l - 5 (1 - ^ )]] 

(27) 

(28) 

since from Eq. (ll) r = 5 (l - r» ). 
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This shows that for any propulsive system I ; the system capability, s s 
is limited to a maximum hy r , the structural ratio, no matter how high 

lb 

the I  is. sp 

(2) When the term (e" - r ) of Eq. (2^) approaches zero, I  —» 0 . s ss 
For this condition then we have a minimum cutoff 

(I )  = - v /(g log r ) (29) 
sp c      r       s 

I  has only practical value then when s s 

I   > (I ) sp    sp c 

The several curves given in Figs. 2(a), 2(b) and 2(c), based on Eq. (24), 

illustrate these characteristics, namely, (l) the reduction of I  to I 7    •" v ' sp   ss 
as introduced by the mass ratio r^; (2) the asymptotic approach of 

I  to (l )  ; and (3) the minimum usable (l ) . ss    ss max v sp c 

(1.9) Physical and Geometric Interpretation of I 
S 3 

In addition to the physical meaning as the net propulsive effective- 

ness of the system, I  has a fundamental geometrical interpretation. 
s s 

Since the system net output (i.e., I ) is determined by v  (see 

Eq. (8)) and since the ratio of gross mass to payload is one of the most 

important design parameters, the functional relation of v = f(log G) 

defined by the fundamental Eq. (6) or (l^) is basic. This relation, stated 

in terms of I , is simply (from Eq. (20)), 
ss 

vr = glss log G (JO) 

Represented as a two-coordinate system with v  and log G as coordinates 

or vector components, any design point then may be considered as a vector. 

gl   is the slope of a line through the design point and the origin and 
s s 

hence is the argument of the vector. This fundamental characteristic 

of I  , which is illustrated in Figs. 3 and h ,  will be treated more ss 
fully in Part (2). 
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PABT (2) - MULTISTAGE VEHICLES 

(2.1) Limitations of Single Stage Vehicles 

From Eq. (ll), if v ( - gl ) is held constant, then v  increases ^    '    e     sp '      r 
as r^ decreases^ reaching an asymptotic limit of 

(vJ    = gl  log J (31) r max    u sp    0 x ' 

c 
This limit differs from that given as Eq. (9) by Malina and Summerfleld . 

Their v    is the velocity at the end of powered flight which is the max 
same as v  given by Eq. (6) above (or^ if g = 0; by Eq. (2l) above.) 

a 0     ' 
v   of Ref. 5 is then an operational limit, whereas (v )   as given by 
max ' r max 

Eq. (jl) is a design limit and consequently of different form. 

For a typical cnemical system with I  = 300 sec, 5 = 0.1 

this limit, (v )   , equals 22,000 ft/sec , as shown in Fig. 3- Even a 
r mo.x _ 

low altitude satellite requires more than this (30,000 to 35*000).  More 

extensive missions require approximately 35*000 for a 300 mile orbit, 

^5,000 for a 25,000 mile orbit, and up to 120,000 for a round trip to Mars. 

This limit is overcome by staging. 

From Eq. (l'j)  we observe that as r^ -^» 0 and v -» (v ) M. \ / ^ r  x r r 
I  —> 0 , as shown in Fig. 1. Consequently, if the propulsive system 
ss 

is to have a reasonable magnitude for its effective propulsive capability, 

namely I , it must be operated well below (v )  . This requires the s s r max 
number of stages to be somewhat greater than v /(v ) 0 " r v r max 

(2.2) Analysis of I   for Staged Vehicles 

We define the mission or reference velocity per stage as  Av 

With n proportionately equal stages of the Malina-Suramcrfield 

type , Eq. (ll) gives 

v n-^v  ^ - ngl  log [5 + r, (l - S)J (32) 
r      r      0 sp  ^ L   4 
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where r, is now the ratio of stage payload. i.e., m,. , the mass of 

all stages it "carries", to in  , its total mass at launch or stage 

separation including m,, . 

In Eq. (32) it is assumed that the same values of AV , 5 , and 

r.  are common to all n stages. If so, then the ratio of actual 
c s 

payload mass to initial launch mass (in contrast to stage "payload") is 

- -1 - J± . M ... JH    -     77     (Ja.)    - (r    )n f^) 
to    ~   m     - m1  m'm   '    i>     ^J    " (l>sj        ^3) 

0 ol       o2 on   i=l  01 

where m.p = m  , etc. by definition of proportionate staging. For a 

vehicle of n stages, then Eq. (19) gives 

I ss V(g l0ß rJo) ^ 

which with Eqs.   (13) and (33) becomes respectively 

Iss    =    - v/g log (ris)n]   =    -     Avr/(h log ris) (35) 

Combining with Eq. (32) gives 

nl  log [5 + r, (1 - B)) log [5 + r. (l - 5)] 
!   = _J£ 1: 61  = j   ^1   (36) 
ss        ,  /  Nn sp      log r,       v ' 

log {rj)s) *                  0 Js 

Eqs. (35) and (36) are independent of n , the number of stages, 

and Eq. (35) is identical with Eq. (l?)• These show the system specific 

impulse of the staged vehicle is the same as that for each stage 

considered separately. This derivation assumes each stage has a common 

value of r« , & , and I . This requirement is shown in the Appendix 

to be unnecessary. 

Restated, Eqs. (35) and (36) show that although higher v can 

be obtained by staging, still the specific propulsive effectiveness of 

the system, i.e., 1  , is not improved by staging. Actually, in 
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practice I  of each stage is decreased 'because 5 must be greater 

because of the added separation equipment. As shown later, small 

increases in I ^ can be obtained indirectly by staging. 

From Eq. (25) we have for a single stage vehicle 

- ,6c 
Tb l-o (37) 

where Ac AV /gl  , 
r & sp 

From Eq. (32) for n stages 

m 

1 -  8 (38) 

and 

rio 

1 - 5 
• c/n 

in 

(39) 

Thus giving for system specific impulse, using Eq.   (3Mj 

ss v /(g log G) m 

v /k log 
1 - 5 

- c/n     7 e      '     - o 
ihl) 

or 

Iss    =    Isp (o/n)/fLog 1 - 5 
- c/n   r 

e  '  - o 
m 

In deriving the I  of each stage, c would be n^c so that Eq. {k2) ss 
is also independent of n in agreement with Eq. (36) 

(2.3) Geometric Interpretation of I  for Staging 
s s 

From Eqs. (32), (35) and (^O) we have 

Avr = glss log Gs (^3) 



and 

lh 

vr = nAv  = gl  (n log G ) (Ml) 

where G =    and refers to a single stage. 
S Tls 

From Eq. {kk)  and its graph given in Fig. h,  vc observe that 

staging, represented by integral values of n = 2 , constitutes a 

"stretching" of both abscissa and ordinate by the factor n . Although 

higher magnitudes of v  are attainable in this way by staging, this 

is accomplished by increasing the magnitude of log G and hence by down- 

grading the payload ratio (= I./G) . At the same time, the slope of the 

line through all points A, B, C and D (Fig. k)  is still the same. Since 

this equals gl  , this is in agreement with the result of Eqs. (35) and (36), 
o o 

namely, that staging does not Improve the propulsive effectiveness, I ss 

(2 A) Indirect Influence of Staging on I 
' '        " SG 

The foregoing analysis resulting in Eqs. (35) and (36) shows that 

I  is not influenced by the number of stages, n , as long as v , 5 , ss r 
r^ and I  are held constant as n is changed. On the contrary, it is 

seen from Eq. (i|-l) and from the family of curves for n = 1, 2, 3, etc. 

given in Fig. h  that design points can be selected for which the slope 

of the line through the origin and hence I  is greater (see Point A'.) ss 

(2.5) Maximum I r  Possible with Staging 

In particular, it is seen that if Av (per stage) is chosen 

smaller and n larger, that I  can be increased to a limit, the tangent 

to the curve at the origin. This occurs when AV —^ 0 as n -—i? ^ 

so that 

nd v  = v 
) r    r 

This limit is determined as follows. If v  and I  are constant, 
r     sp ' 

c (= v /g I,, ) will also be constant and Eq. (^2) Is then a function of 

n . If n is increased without bound, Eq. (^2) gives u/log 1 which is 

X ndeterminant. 
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lim ÜIL 

n—» oo log ( 
- c/n c. e  ' - o 

= lim 
dn 

(c/n) 

n-*^ h ^ (• 1 - 5 
• c/n 

1 - 5 (^5) 

Hence 

I ~> (1 - 5) I ss   v      sp m 
(2.6) Minimum Ilumber of Stages 

An additional point: If the denominator of the term under the log 

of Eq. (42) is zero or negative, then I  is respectively zero or 
ss 

negative, Hence; only values for which 

- c/n -^ 9 e  '  > 5 (47) 

are of practical interest. Condition {kl)  may be written 

c/n = vr/n glsp - log 5 W 

which is Eq. (3l) expressed for n stages with v = n AV . 

From Eq. (48) we can determine the minimum number of stages 

required for any mission constant c . Table I lists such results for 

various values of c . Table II lists combinations of I  and v 
sp     r 

which give the mission constants of Table I. 

(2.7) Preferred Number of Stages 

From Eqs. (4) and (46) then, it is seen that I  can be increased 
SS 

by staging within the conditions cited, namely that  v (= v /n) be 

chosen small and n increased. The ratio, I /l , given by Eq. (42) 
SS  SJ) 

is plotted in Fig. 5 for some typical values of c and 5 . It is 

observed that I /l   approaches near its limit for n = 1 for c =0.2 

6 = 0.4 and for n = 2 for c = 2 , 5 = 0.1 . 

This is generally the case, as c gets larger the minimum number 

of stages (which must be used as given in Table l) increases and for any 
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niunber, n ,  above that minimum, the ratio I /l  Is closely equal to the 

limiting value. Since it is in the interest of low cost, less complica- 

tion, and higher reliability to keep n down, then n must be confined 

within these rather narrow limits, between (l) the minimum usable 

(calculated from Eq. (^8), and (2) just enough to realize the principal 

part of the ratio I /l c ss sp 

For the three examples plotted on Fig. 5^ the preferred number of 

stages accordingly Is 

For c = 0.2 , 5 = 0.4 

c = 2 6 = 0.1 

c = 4   5 = 0.1 

n - 1 

n = 2 

n = 4 preferably 

(three could be used) 

Since c = v /g I , when considering the advisability of one design 

over another, it is seen that high I  which gives low c (such as 0.2)j 

even with the penalty of high structural factor (5 = 0.4), requires 

only one stage. On the other hand, the low structural factor of 

5 = 0.1 requires 2 to 4 stages when c is 2 to 4, respectively. This 

would be the case if the I  were respectively l/lO and l/20 that for 

c = 0.2 . Thus increased I  removes the necessity of staging in many 
sp 

cases, even with high 6 . 

(2.8) Minimum Gross Mass Ratio 

From Eq. (39) we have, after combining with Eqs. (4o) and (46) 

for the limiting case where n ~> oo, 

v /gl r 0 ss 

We define f„ = G /O G   n' cv. 

= e V(l-5) 

1-5 
- c/n c 

L e    - o 

n / ec/(l-5) 

(49) 

(50) 
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Thus,  Eq.  (39) becomes 

«„ = V- = VC/(1 ' 6) (51) 

Eq.» (^9) gives the lowest possible value of G for a given mission 

constant, c , and structural factor, 0 , when the number of stages is 

infinite. Since an Infinite number of stages is practically impossible, 

then in any actual application G will bo larger as given by G  in 

Eqs. (39) and (51). 

Eq. (50) shows how much greater G is than the lowest possible 

minimum, namely Gro . f is plotted in Fig. 6 for two typical cases. 

The dashed line, A , shows a cross plot of f vs n for optimistically 
u 

low values of f  selected for n = ^ and n - 10 , respectively, 

n = 3 and n = 8 could have been chosen, giving curve B , thus nearly 

doubling f  but reducing the number of stages by one. It is assumed 

that the former case would normally be selected in a design, thereby 

adding one extra stage to reduce the launch mass by nearly 50^- For the 

analysis, the important points are (l) that f  is a function of n 

(whether curve A or D is selected), which can be detemiined in terms of 

v , 5 and I ; (2) that fn is at least 1.5 for all missions and 
r ;       sp G 

designs of interest; and (3) that the longer missions requiring 

v --s> 130,000 ft/sec with I  = kOO  sec and 5 = 0.1, f_ can be as 
T ' ' sp '  G 

large as 2.0 to h.6. 

For this range of v , we conclude the following approximate 

relation, najnely 

1-5 < fG ^ ^.6 (52) 

Condition (52), with Eq. (5l), provides a means of determining the lowest 

practical magnitude of G  to be expected in terms of c , 6 and n . n 

(2.9) Apparent Effect of Staging 

We can take the relation given by Eq. (lO) and apply it in the 

following way to a vehicle of n stages: 
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nAv  = - gi   log (l - r ) 
r     ö spo  ü v   po (53) 

vhere I   would be the specific impulse with r   necessary to 

produce     v ; and r   is the ratio of the total mass of propellant 

from all stages to the total launch mass- 

if typical values are substituted in Eq. (53); the result gives 

an I   which could be interpreted as a system specific impulse, and 

which would be approximately equal to nl  , the number of stages times 
sp 

the propellant I 
sp From this interpretation it could be concluded 

that staging increases i ^ by a factor n . This result is at variance 
S b 

with that concluded from Eqs. (35) and (36). The distinction is that 

I   Includes the downgrading of the payload factor (increase in G ) 

mentioned earlier, which is confused with the propulsive system effect- 

iveness. 

To show this, Eq. (53) may be written 

v  = - gi   log (r, + r ) 
r     ü spo  0 v Jco       so w 

where r   is the ratio of total structural mass to gross launch mass, so J 

But by Eq. (33) this is 

v  = - gi   log 
r      spo (r, )" + r ] V /s' so J (55) 

In actual applications r  , the over-all structural mass ratio , 

is not appreciably different from r  , that for each separate stage. ss 
Likewise, r.  and r ^ are usually of about the same magnitude. 

X s       ss 
Accordingly, assuming 

lh r  = r ss    so (56) 

and Eq. (55) becomeü 

gi   log f (r )n + r ] = - gi   log [r (l + r n"1)/ (57) u spo  ü Lx ss'    GS1     c' spo  D L ssv    ss  'j ^s1' 
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In Eq. (57), for those applications (which include most) where r,,  is 
•I xt S 

of the order of 0.25 or less, if n = 3 we have (r« ) " -^ 1 . 

(r7n)  ' can be ignored, leaving 

gl   log r 
spo    so 

gl   log r 
spo     Si 

,1/n 
But since r,, = r   and r. = (r - ) '  then approximately 

xs   ss     ^s   x 0 

(58) 

GpO       1   /1 g log (~ 
TT^ 

% 

nv 

■1  1 

'-'0 

;59; 

If I   is interpreted as Ir_r , then the result from Eq. (59) 

(that staging increases the I  linearly with n }  the number of stages) 
SG 

is at variance with that from Eq. (35) (that staging has no direct effect 

on 1^ .) But Eq. (59) requires 

(a) = r^ ; the structural factor for each stage to be equal s s 

to that for the over-all vehicle; and 

(b) (r J"-1-!. 

Then, essentially, the payload ratio is negligible and is reduced to 

(r • ) , a much smaller fraction of the launch mass.  Because of this, 

(b) as well as (a) can be utilized to transform Eq. (53) into Eq. (59)■ 

The principal point is that r^ , which is of the order of 0.25 when 

raised to the nth power (for n stages), is insignificant relative to 

r   and hence r 
so ss 

(as by Eq. (59)) 

Thus we gain an Insight as to what is actually accomplished by 

staging, namely that the payload factor can be reduced to insignificance 

with respect to the structural factor, as shown in Eq. (57). 

This does not occur  if n = 1 , i.e., without staging, as shown by 

Eq. (32). 
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While in the foregoing analysis condition (b), that {TJ )     be 

negligible comuared to 1 , is used to obtain the result I   = nl  . D D      "        ' spo   sp ' 

if {VA  )  is small but not negligible, then a similar result can be 

obtained with I   = knl   where now k is a parameter less than 1 . 
spo    sp r 

From the foregoing it is evident that I   (which equals approxi- 

mately nl ) is partly a measure of payload downgrading as well as 
sp 

propulsive system effectiveness. It seems in the interest of clarity to 

keep these separate by retaining Eq. (35) as the measure of propulsive 

system effectiveness and Eq. (39) and its subsequent implications as the 

measure of payload downgrading introduced by staging. 

CONCLUSION 

Introduction of the concept of I  as a measure of the dynamic 

effectiveness of a space system makes it possible    to rate systems of 

various types of propulsion with different I , 8 , v  and r,  on a 
sp7   '  r     / 

single common scale for direct comparison. 

It further makes it possible (l) to separate the system net effect- 

iveness I  of a multistage vehicle from the downgrading of payload- 

carrying capabilities introduced by the staging, and (2) to recognize that 

the system effectiveness for each stage is equal to the over-all system I 
ss 

if staging is proportionate, or that it is a simple summation if the 

staging is non-proportionate. 

Thus space vehicle analysis involving staging can be more directly 

concentrated on the characteristics of the individual stage with little 

more than adding or "stacking" of the stages to obtain the necessary 

v = nAv  where Av  is the limited velocity characteristic per stage. 

Following this procedure, it is observed from Fig. 3 that for all 

curves for single stage vehicles, i.e., with n = 1, the "knee" of the 

logarithmic curves all occur at approximately the same value of G , 

i.e., G . This effect is brought out clearly by representing v  non- 
s r 

dimensionally by combining Eqs. (ll), (15) and (31) as 

vr     log [5 + G^d - 5)] 

171— =  i^  (6o) 
r max 
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Tliis equation IG independent of I  and v  and shows that the 
■^        sp     r 

relative velocity increment per sti-ge is a function only of 5 and C- . 

A graph of Eq. (60) given in Fig. 7 further shows the rather limited effect 

introduced by 5 when v /(v )   is considered as a function of G , 
r  r max s 

even for a vide range of values of 5 . 

Thus it becomes evident that regardless of magnitude of I  , whether 

as low as 250 sec as for some chemical systems or as high as 15.,000 for a 

nuclear system, because of the logarithmic nature of the basic dynamic 

equation of an accelerating propellant reaction system, the payload- 

carrying capability (r n = G  ) is limited, for reasonably practical 
•Co      o 

magnitudes of I  (as indicated from Fig. l), to a narrow range of values 

approximately given by the inequality 

G 1 .. 6 (6l) 
si 

Recalling that for a vehicle of n stages the over-all mass to payload 

ratio, by Eq. (32), is 

0 = (Gsl)
n (62) 

it is evident that using Eq. (62), the inequality (6l) becomes 

(3)n-G.-(6)n (63) 

where n = v / /iv . 
r  r 

rrom this it becomes evident where the main advantage of massive, 

high I  systems, such as potential nuclear types, lies; and we reach 
sp 

the important conclusion that while nuclear systems will have about the 

same magnitude for the stage mass factor, G^ , with them it is possible 

to reduce the number of stages by an order of magnitude and hence the 

over-all mass ratio G by an exponential order of magnitude. Expressed 

numerically for a more extensive mission (v = 120,000 ft/sec), this 

reduces G (if G = k)    from k     to k    or from k       to   k    .    This  is 
s 

a reduction in the gross takeoff mass, for a particular payload mass, of 

more than 10 . 
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APPENDIX 

Non-proportionate Staging 

The preceding derivations represented by Eq. (32) and those 

following are based on the assumption of proportionate staging of the 

Malina-Summerfield type where v ,5,1   and r«  are the same for 
r      sp     A. s 

each stage. 

If these latter quantities are not the same per stage^ Eq. {kk) 

instead of being determined by an n-factor stretching of ordinates and 

abscissas will be obtained from addition of a number of unequal portions, 

thus 
n 

v^  =  /    AV^. {6k) r   4—    n 

From (l) Eq. (64) which shows v  to be the resultant of a sum 

of AV . , and (2) the simple rule for addition of logarithms 

log G, + log G = log G.,Gp we have, since Eq. (20) gives v = f(log G), 

that the resultant of a typical design point such as D on Fig. h    can 

be represented as a resultant vector with components (v )  and (log GL. 

Thus (gl )_ is the argument of this resultant vector, which in terms of vo ss D ' 
its components is given by 

n 
< 
.d_ n i=u 

n 
G 1 

1=0 
log G. 

i 

(65) 

where 

and 

G. = l/r . 
1    '  si 

n 
log G = IE log G (66) 

i=0 
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Eqs. (64), (65) and (66) show that both v  and I n are obtainable 

from vector addition processes and that any combination which results in 

a particular vector is equally effective. This is illustrated by the 

two different stagings by which Point D on Fig. k  is obtained, one with 

proportionate staging and one without. 

FWR:db 
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TABLE I 

Minimum Number of Stage s 

5 log 1/5 

3.00 

0.? 

1 

1.0 

1 

2.0 

1 

5-0 

2 

10.0 

0.05 4 

0.1 2.30 1 1 1 3 5 
0.2 l.6i 1 1 2 4 7 
0.3 1.21 1 1 2 5 9 
0.4 • 917 1 2 3 6 11 

0.5 .694 1 2 4 8 15 

0.6 .511 1 2 4 10 20 

TABLE II 

Sri cal Magnitudes of c (=v ^V* 
i 

sp 
v^ = 30,000 6o,000          90,000 130,000 200,000 ft/sec 

'+00 2.33 4.65 7.00 10.1 15.5 

6oo 1.55 3.10 4.65 6.70 10.3 

8oo 1.17 2.33 3.50 5.05 7.70 

1000 .93 1.86 2.80 4.03 6.22 

2000 .47 •93 1.40 2.02 3.11 

4000 .23 .47 • 70 1.01 1.55 

6000 .16 .31 .47 .67 1.03 

If I  replaces I , c becomes c . 
ss        sp 
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LIST OF FIGURES 

1. Variation of I /l  for typical values of structural mass factor 
SG' sp    ^ 

and stage mass ratio. 

2a. Reduction of I  introduced by r for v = 12,000 ft/sec 
GS 

b. Reduction of I  introduced by r for v = 36,000 ft/sec ss 

c. Reduction of I  introduced by r for v = 120.000 ft/sec 
ss ^ G    r 

3- Typical curves illustrating the significance of I  as a single measure 

for performance representing combinations of I ,6 and n. 

k.    Vector summation for proportionate and non-proportionate staging. 

5. Influence of number of stages on I /l 
ss' sp 

6. Mass increase factor for n < oo 

7« Non-dimensional stage performance. 
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